44 research outputs found

    North Sea hydro acoustic herrng survey Survey report for R/V TRIDENS 23 June - 18 July 2014

    Get PDF
    The Dutch Institute for Marine Resources & Ecosystem Studies (IMARES) has been participating in the international North Sea acoustic survey for herring since 1991. Participants in this survey are Scotland, Norway, Germany, Denmark, The Netherlands and Ireland. The survey is part of the EU data collection framework (DCF) and is coordinated by the ICES Working Group for International Pelagic Surveys (WGIPS, formerly PGIPS/PGHERS). The aim of this survey is to provide an abundance estimate of the whole North Sea herring population. This estimate is used as a tuning index by the ICES Herring Assessment Working Group (HAWG) in its assessment of the population size. In this report the results are presented for the survey in the central North Sea, carried out by the Dutch vessel R/V Tridens

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Assessing the Value of DNA Barcodes and Other Priority Gene Regions for Molecular Phylogenetics of Lepidoptera

    Get PDF
    BACKGROUND: Despite apparently abundant amounts of observable variation and species diversity, the order Lepidoptera exhibits a morphological homogeneity that has provided only a limited number of taxonomic characters and led to widespread use of nucleotides for inferring relationships. This study aims to characterize and develop methods to quantify the value of priority gene regions designated for Lepidoptera molecular systematics. In particular, I assess how the DNA barcode segment of the mitochondrial COI gene performs across a broad temporal range given its number one position of priority, most sequenced status, and the conflicting opinions on its phylogenetic performance. METHODOLOGY/PRINCIPAL FINDINGS: Gene regions commonly sequenced for lepidoptera phylogenetics were scored using multiple measures across three categories: practicality, which includes universality of primers and sequence quality; phylogenetic utility; and phylogenetic signal. I found that alternative measures within a category often appeared correlated, but high scores in one category did not necessarily translate into high scores in another. The DNA barcode was easier to sequence than other genes, and had high scores for utility but low signal above the genus level. CONCLUSIONS/SIGNIFICANCE: Given limited financial resources and time constraints, careful selection of gene regions for molecular phylogenetics is crucial to avoid wasted effort producing partially informative data. This study introduces an approach to assessing the value of gene regions prior to the initiation of new studies and presents empirical results to help guide future selections

    Assessing the Value of DNA Barcodes for Molecular Phylogenetics: Effect of Increased Taxon Sampling in Lepidoptera

    Get PDF
    BACKGROUND: A common perception is that DNA barcode datamatrices have limited phylogenetic signal due to the small number of characters available per taxon. However, another school of thought suggests that the massively increased taxon sampling afforded through the use of DNA barcodes may considerably increase the phylogenetic signal present in a datamatrix. Here I test this hypothesis using a large dataset of macrolepidopteran DNA barcodes. METHODOLOGY/PRINCIPAL FINDINGS: Taxon sampling was systematically increased in datamatrices containing macrolepidopteran DNA barcodes. Sixteen family groups were designated as concordance groups and two quantitative measures; the taxon consistency index and the taxon retention index, were used to assess any changes in phylogenetic signal as a result of the increase in taxon sampling. DNA barcodes alone, even with maximal taxon sampling (500 species per family), were not sufficient to reconstruct monophyly of families and increased taxon sampling generally increased the number of clades formed per family. However, the scores indicated a similar level of taxon retention (species from a family clustering together) in the cladograms as the number of species included in the datamatrix was increased, suggesting substantial phylogenetic signal below the 'family' branch. CONCLUSIONS/SIGNIFICANCE: The development of supermatrix, supertree or constrained tree approaches could enable the exploitation of the massive taxon sampling afforded through DNA barcodes for phylogenetics, connecting the twigs resolved by barcodes to the deep branches resolved through phylogenomics

    Smoking patterns and stimulus control in intermittent and daily smokers

    Get PDF
    Intermittent smokers (ITS) - who smoke less than daily - comprise an increasing proportion of adult smokers. Their smoking patterns challenge theoretical models of smoking motivation, which emphasize regular and frequent smoking to maintain nicotine levels and avoid withdrawal, but yet have gone largely unexamined. We characterized smoking patterns among 212 ITS (smoking 4-27 days per month) compared to 194 daily smokers (DS; smoking 5-30 cigarettes daily) who monitored situational antecedents of smoking using ecological momentary assessment. Subjects recorded each cigarette on an electronic diary, and situational variables were assessed in a random subset (n = 21,539 smoking episodes); parallel assessments were obtained by beeping subjects at random when they were not smoking (n = 26,930 non-smoking occasions). Compared to DS, ITS' smoking was more strongly associated with being away from home, being in a bar, drinking alcohol, socializing, being with friends and acquaintances, and when others were smoking. Mood had only modest effects in either group. DS' and ITS' smoking were substantially and equally suppressed by smoking restrictions, although ITS more often cited self-imposed restrictions. ITS' smoking was consistently more associated with environmental cues and contexts, especially those associated with positive or "indulgent" smoking situations. Stimulus control may be an important influence in maintaining smoking and making quitting difficult among ITS. © 2014 Shiffman et al

    How many species of seed plants are there?

    No full text
    Recent estimates of the number of described species of seed plant have varied by as much as 62%. The underlying methodology of these estimates is characterised and discussed. We present a revised figure for the number of seed plants based on estimating rates of synonymy in a sample of recently monographed taxa. We conclude that some recent figures overestimate the number of described seed plant species by more than 200,000. This discrepancy is explained by an over-reliance on checklists and floristic studies that underestimate synonymy rates

    Determining the potential utility of datasets for phylogeny reconstruction

    No full text
    The utility of morphological and molecular data in phylogenetic inference has been widely debated. Potential utility is intrinsically related to size, so the importance of morphological data in phylogenetic inference is becoming increasingly uncertain as molecular datasets grow rapidly larger. To test the continuing relevance of morphological data, we present an empirical investigation of size in a selection of recent data matrices and contrast the possible methods of measuring relative potential utility. Molecular datasets contained significantly more variable and parsimony-informative characters, and implied a greater number of parsimony-informative character-state changes than morphological ones. The latter is suggested to be the most useful measure of potential utility in phylogeny reconstruction, and shows much greater variability and overlap between molecular and morphological datasets. Morphological datasets often have much greater phylogenetic utility than is apparent from their size, and thus molecular datasets are not always more useful simply because they contain a greater number of aligned characters. We recommend these more accurate measures of utility should be more widely reported in phylogenetic research
    corecore